LOG#047. The Askaryan effect.


I discussed and reviewed the important Cherenkov effect and radiation in the previous post, here:

https://thespectrumofriemannium.wordpress.com/2012/10/16/log046-the-cherenkov-effect/

Today we are going to study a relatively new effect ( new experimentally speaking, because it was first detected when I was an undergraduate student, in 2000) but it is not so new from the theoretical aside (theoretically, it was predicted in 1962). This effect is closely related to the Cherenkov effect. It is named Askaryan effect or Askaryan radiation, see below after a brief recapitulation of the Cherenkov effect last post we are going to do in the next lines.

We do know that charged particles moving faster than light through the vacuum emit Cherenkov radiation. How can a particle move faster than light? The weak speed of a charged particle can exceed the speed of light. That is all. About some speculations about the so-called tachyonic gamma ray emissions, let me say that the existence of superluminal energy transfer has not been established so far, and one may ask why. There are two options:

1) The simplest solution is that superluminal quanta just do not exist, the vacuum speed of light being the definitive upper bound.

2) The second solution is that the interaction of superluminal radiation with matter is very small, the quotient of tachyonic and electric fine-structure constants being q_{tach}^2/e^2<10^{-11}. Therefore superluminal quanta and their substratum are hard to detect.

A related and very interesting question could be asked now related to the Cherenkov radiation we have studied here. What about neutral particles? Is there some analogue of Cherenkov radiation valid for chargeless or neutral particles? Because neutrinos are electrically neutral, conventional Cherenkov radiation of superluminal neutrinos does not arise or it is otherwise weakened. However neutrinos do carry electroweak charge and may emit certain Cherenkov-like radiation via weak interactions when traveling at superluminal speeds. The Askaryan effect/radiation is this Cherenkov-like effect for neutrinos, and we are going to enlighten your knowledge of this effect with this entry.

We are being bombarded by cosmic rays, and even more, we are being bombarded by neutrinos. Indeed, we expect that ultra-high energy (UHE) neutrinos or extreme ultra-high energy (EHE) neutrinos will hit us as too. When neutrinos interact wiht matter, they create some shower, specifically in dense media. Thus, we expect that the electrons and positrons which travel faster than the speed of light in these media or even in the air and they should emit (coherent) Cherenkov-like radiation.

Who was Gurgen Askaryan?

Let me quote what wikipedia say about him: Gurgen Askaryan (December 14, 1928-1997) was a prominent Soviet (armenian) physicist, famous for his discovery of the self-focusing of light, pioneering studies of light-matter interactions, and the discovery and investigation of the interaction of high-energy particles with condensed matter. He published more than 200 papers about different topics in high-energy physics.

Other interesting ideas by Askaryan: the bubble chamber (he discovered the idea independently to Glaser, but he did not published it so he did not win the Nobel Prize), laser self-focussing (one of the main contributions of Askaryan to non-linear optics was the self-focusing of light), and the acoustic UHECR detection proposal. Askaryan was the first to note that the outer few metres of the Moon’s surface, known as the regolith, would be a sufficiently transparent medium for detecting microwaves from the charge excess in particle showers. The radio transparency of the regolith has since been confirmed by the Apollo missions.

If you want to learn more about Askaryan ideas and his biography, you can read them here: http://en.wikipedia.org/wiki/Gurgen_Askaryan

What is the Askaryan effect?

The next figure is from the Askaryan radiation detected by the ANITA experiment:

The Askaryan effect is the phenomenon whereby a particle traveling faster than the phase velocity of light in a dense dielectric medium (such as salt, ice or the lunar regolith) produces a shower of secondary charged particles which contain a charge anisotropy  and thus emits a cone of coherent radiation in the radio or microwave  part of the electromagnetic spectrum. It is similar, or more precisely it is based on the Cherenkov effect.

High energy processes such as Compton, Bhabha and Moller scattering along with positron annihilation  rapidly lead to about a 20%-30% negative charge asymmetry in the electron-photon part of a cascade. For instance, they can be initiated by UHE (higher than, e.g.,100 PeV) neutrinos.

1962, Askaryan first hypothesized this effect and suggested that it should lead to strong coherent radio and microwave Cherenkov emission for showers propagating within the dielectric. Since the dimensions of the clump of charged particles are small compared to the wavelength of the radio waves, the shower radiates coherent radio Cherenkov radiation whose power is proportional to the square of the net charge in the shower. The net charge in the shower is proportional to the primary energy so the radiated power scales quadratically with the shower energy, P_{RF}\propto E^2.

Indeed, these radio and coherent radiations are originated by the Cherenkov effect radiation. We do know that:

\dfrac{P_{CR}}{d\nu}\propto \nu d\nu

from the charged particle in a dense (refractive) medium experimenting Cherenkov radiation (CR). Every charge emittes a field \vert E\vert\propto \exp (i\mathbf{k}\cdot\mathbf{r}). Then, the power is proportional to E^2. In a dense medium:

R_{M}\sim 10cm

We have two different experimental and interesting cases:

A) The optical case, with \lambda <<R_M. Then, we expect random phases and P\propto N.

B) The microwave case, with \lambda>>R_M. In this situation, we expect coherent radiation/waves with P\propto N^2.

We can exploit this effect in large natural volumes transparent to radio (dry): pure ice, salt formations, lunar regolith,…The peak of this coherent radiation for sand is produced at a frequency around 5GHz, while the peak for ice is obtained around 2GHz.

The first experimental confirmation of the Askaryan effect detection were the next two experiments:

1) 2000 Saltzberg et.al., SLAC. They used as target silica sand. The paper is this one http://arxiv.org/abs/hep-ex/0011001

2) 2002 Gorham et.al., SLAC. They used a synthetic salt target. The paper appeared in this place http://arxiv.org/abs/hep-ex/0108027

Indeed, in 1965, Askaryan himself proposes ice and salt as possible target media. The reasons are easy to understand:
1st. They provide high densities and then it means a higher probability for neutrino interaction.
2nd. They have a high refractive index. Therefore, the Cerenkov emission becomes important.
3rd. Salt and ice are radio transparent, and of course, they can be supplied in large volumes available throughout the world.

The advantages of radio detection of UHE neutrinos provided by the Askaryan effect are very interesting:

1) Low attenuation: clear signals from large detection volumes.
2) We can observe distant and inclined events.
3) It has a high duty cycle: good statistics in less time.
4) I has a relative low cost: large areas covered.
5) It is available for neutrinos and/or any other chargeless/neutral particle!

Problems with this Askaryan effect detection are, though: radio interference, correlation with shower parameters (still unclear), and that it is limited only to particles with very large energies, about E>10^{17}eV.

In summary:

Askaryan effect = coherent Cerenkov radiation from a charge excess induced by (likely) neutral/chargeless particles like (specially highly energetic) neutrinos passing through a dense medium.

Why the Askaryan effect matters?

It matters since it allows for the detection of UHE neutrinos, and it is “universal” for chargeless/neutral particles like neutrinos, just in the same way that the Cherenkov effect is universal for charged particles. And tracking UHE neutrinos is important because they point out towards its source, and it is suspected they can help us to solve the riddle of the origin and composition of cosmic rays, the acceleration mechanism of cosmic radiation, the nuclear interactions of astrophysical objects, and tracking the highest energy emissions of the Universe we can observe at current time.

Is it real? Has it been detected? Yes, after 38 years, it has been detected. This effect was firstly demonstrated in sand (2000), rock salt (2004) and ice (2006), all done in a laboratory at SLAC and later it has been checked in several independent experiments around the world. Indeed, I remember to have heard about this effect during my darker years as undergraduate student. Fortunately or not, I forgot about it till now. In spite of the beauty of it!

Moreover, it has extra applications to neutrino detection using the Moon as target: GLUE (detectors are Goldstone RTs), NuMoon (Westerbork array; LOFAR), or RESUN (EVLA), or the LUNASKA project. Using ice as target, there has been other experiments checking the reality of this effect: FORTE (satellite observing Greenland ice sheet), RICE (co-deployed on AMANDA strings, viewing Antarctic ice), and the celebrated ANITA (balloon-borne over Antarctica, viewing Antarctic ice) experiment.

Furthermore, even some experiments have used the Moon (an it is likely some others will be built in the near future) as a neutrino detector using the Askaryan radiation (the analogue for neutral particles of the Cherenkov effect, don’t forget the spot!).

Askaryan effect and the mysterious cosmic rays.

Askaryan radiation is important because is one of the portals of the UHE neutrino observation coming from cosmic rays. The mysteries of cosmic rays continue today. We have detected indeed extremely energetic cosmic rays beyond the 10^{20}eV scale. Their origin is yet unsolved. We hope that tracking neutrinos we will discover the sources of those rays and their nature/composition. We don’t understand or know any mechanism being able to accelerate particles up to those incredible particles. At current time, IceCube has not detected UHE neutrinos, and it is a serious issue for curren theories and models. It is a challenge if we don’t observe enough UHE neutrinos as the Standard Model would predict. Would it mean that cosmic rays are exclusively composed by heavy nuclei or protons? Are we making a bad modelling of the spectrum of the sources and the nuclear models of stars as it happened before the neutrino oscillations at SuperKamiokande and Kamikande were detected -e.g.:SN1987A? Is there some kind of new Physics living at those scales and avoiding the GZK limit we would naively expect from our current theories?

Advertisements

LOG#046. The Cherenkov effect.

The Cherenkov effect/Cherenkov radiation, sometimes also called Vavilov-Cherenkov radiation, is our topic here in this post.

In 1934, P.A. Cherenkov was a post graduate student of S.I.Vavilov. He was investigating the luminescence of uranyl salts under the incidence of gamma rays from radium and he discovered a new type of luminiscence which could not be explained by the ordinary theory of fluorescence. It is well known that fluorescence arises as the result of transitions between excited states of atoms or molecules. The average duration of fluorescent emissions is about \tau>10^{-9}s and the transition probability is altered by the addition of “quenching agents” or by some purification process of the material, some change in the ambient temperature, etc. It shows that none of these methods is able to quench the fluorescent emission totally, specifically the new radiation discovered by Cherenkov. A subsequent investigation of the new radiation ( named Cherenkov radiation by other scientists after the Cherenkov discovery of such a radiation) revealed some interesting features of its characteristics:

1st. The polarization of luminiscence changes sharply when we apply a magnetic field. Cherenkov radiation luminescence is then causes by charged particles rather than by photons, the \gamma-ray quanta! Cherenkov’s experiment showed that these particles could be electrons produced by the interaction of \gamma-photons with the medium due to the photoelectric effect or the Compton effect itself.

2nd. The intensity of the Cherenkov’s radiation is independent of the charge Z of the medium. Therefore, it can not be of radiative origin.

3rd. The radiation is observed at certain angle (specifically forming a cone) to the direction of motion of charged particles.

The Cherenkov radiation was explained in 1937 by Frank and Tamm based on the foundations of classical electrodynamics. For the discovery and explanation of Cherenkov effect, Cherenkov, Frank and Tamm were awarded the Nobel Prize in 1958. We will discuss the Frank-Tamm formula later, but let me first explain how the classical electrodynamics handle the Vavilov-Cherenkov radiation.

The main conclusion that Frank and Tamm obtained comes from the following observation. They observed that the statement of classical electrodynamics concerning the impossibility of energy loss by radiation for a charged particle moving uniformly and following a straight line in vacuum is no longer valid if we go over from the vacuum to a medium with certain refractive index n>1. They went further with the aid of an easy argument based on the laws of conservation of momentum and energy, a principle that rests in the core of Physics as everybody knows. Imagine a charged partice moving uniformly in a straight line, and suppose it can loose energy and momentum through radiation. In that case, the next equation holds:

\left(\dfrac{dE}{dp}\right)_{particle}=\left(\dfrac{dE}{dp}\right)_{radiation}

This equation can not be satisfied for the vacuum but it MAY be valid for a medium with a refractive index gretear than one n>1. We will simplify our discussion if we consider that the refractive index is constant (but similar conclusions would be obtained if the refractive index is some function of the frequency).

By the other hand, the total energy E of a particle having a non-null mass m\neq 0 and moving freely in vacuum with some momentum p and velocity v will be:

E=\sqrt{p^2c^2+m^2c^4}

and then

\left(\dfrac{dE}{dp}\right)_{particle}=\dfrac{pc^2}{E}=\beta c=v

Moreover, the electromagnetic radiation in vaccum is given by the relativistic relationship

E_{rad}=pc

From this equation, we easily get that

\left(\dfrac{dE}{dp}\right)_{radiation}=c

Since the particle velocity is v<c, we obtain that

\left(\dfrac{dE}{dp}\right)_{particle}<\left(\dfrac{dE}{dp}\right)_{radiation}

In conclusion: the laws of conservation of energy and momentum prevent that a charged particle moving with a rectilinear and uniform motion in vacuum from giving away its energy and momentum in the form of electromagnetic radiation! The electromagnetic radiation can not accept the entire momentum given away by the charged particle.

Anyway, we realize that this restriction and constraint is removed and given up when the aprticle moves in a medium with a refractive index n>1. In this case, the velocity of light in the medium would be

c'=c/n<c

and the velocity v of the particle may not only become equal to the velocity of light c' in the medium, but even exceed it when the following phenomenological condition is satisfied:

\boxed{v\geq c'=c/n}

It is obvious that, when v=c' the condition

\left(\dfrac{dE}{dp}\right)_{particle}=\left(\dfrac{dE}{dp}\right)_{radiation}

will be satisfied for electromagnetic radiation emitted strictly in the direction of motion of the particle, i.e., in the direction of the angle \theta=0\textdegree. If v>c', this equation is verified for some direction \theta along with v=c', where

v'=v\cos\theta

is the projection of the particle velocity v on the observation direction. Then, in a medium with n>1, the conservation laws of energy and momentum say that it is allowed that a charged particle with rectilinear and uniform motion, v\geq c'=c/n can loose fractions of energy and momentum dE and dp, whenever those lost energy and momentum is carried away by an electromagnetic radiation propagating in the medium at an angle/cone given by:

\boxed{\theta=arccos\left(\dfrac{1}{n\beta}\right)=\cos^{-1}\left(\dfrac{1}{n\beta}\right)}

with respect to the observation direction of the particle motion.

These arguments, based on the conservation laws of momenergy, do not provide any ide about the real mechanism of the energy and momentum which are lost during the Cherenkov radiation. However, this mechanism must be associated with processes happening in the medium since the losses can not occur ( apparently) in vacuum under normal circumstances ( we will also discuss later the vacuum Cherenkov effect, and what it means in terms of Physics and symmetry breaking).

We have learned that Cherenkov radiation is of the same nature as certain other processes we do know and observer, for instance, in various media when bodies move in these media at a velocity exceeding that of the wave propagation. This is a remarkable result! Have you ever seen a V-shaped wave in the wake of a ship? Have you ever seen a conical wave caused by a supersonic boom of a plane or missile? In these examples, the wave field of the superfast object if found to be strongly perturbed in comparison with the field of a “slow” object ( in terms of the “velocity of sound” of the medium). It begins to decelerate the object!

Question: What is then the mechanism behind the superfast  motion of a charged particle in a medium wiht a refractive index n>1 producing the Cherenkov effect/radiation?

Answer:  The mechanism under the Cherenkov effect/radiation is the coherent emission by the dipoles formed due to the polarization of the medium atoms by the charged moving particle!

The idea is as follows. Dipoles are formed under the action of the electric field of the particle, which displaces the electrons of the sorrounding atoms relative to their nuclei. The return of the dipoles to the normal state (after the particle has left the given region) is accompanied by the emission of an electromagnetic signal or beam. If a particle moves slowly, the resulting polarization will be distribute symmetrically with respect to the particle position, since the electric field of the particle manages to polarize all the atoms in the near neighbourhood, including those lying ahead in its path. In that case, the resultant field of all dipoles away from the particle are equal to zero and their radiations neutralize one to one.

Then, if the particle move in a medium with a velocity exceeding the velocity or propagation of the electromagnetic field in that medium, i.e., whenever v>c'=c/n, a delayed polarization of the medium is observed, and consequently the resulting dipoles will be preferably oriented along the direction of motion of the particle. See the next figure:

It is evident that, if it occurs, there must be a direction along which a coherent radiation form dipoles emerges, since the waves emitted by the dipoles at different points along the path of the particle may turn our to be in the same phase. This direction can be easiy found experimentally and it can be easily obtained theoretically too. Let us imagine that a charged particle move from the left to the right with some velocity v in a medium with a n>1 refractive index, with c'=c/n. We can apply the Huygens principle to build the wave front for the emitted particle. If, at instant t, the aprticle is at the point x=vt, the surface enveloping the spherical waves emitted by the same particle on its own path from the origin at x=0 to the arbitrary point x. The radius of the wave at the point x=0 at such an instant t is equal to R_0=c't. At the same moment, the wave radius at th epint x is equal to R_x=c'(t-(x/v))=0. At any intermediate point x’, the wave radius at instant t will be R_{x'}=c'(t-(x'/v)). Then, the radius decreases linearly with increasing x'. Thus, the enveloping surface is a cone with angle 2\varphi, where the angle satisfies in addition

\sin\varphi=\dfrac{R_0}{x}=\dfrac{c't}{vt}=\dfrac{c'}{v}=\dfrac{c}{vn}=\dfrac{1}{\beta n}

The normal to the enveloping surface fixes the direction of propagation of the Cherenkov radiation. The angle \theta between the normal and the x-axis is equal to \pi/2-\varphi, and it is defined by the condition

\boxed{\cos\theta=\dfrac{1}{\beta n}}

or equivalently

\boxed{\tan\theta=\sqrt{\beta^2n^2-1}}

This is the result we anticipated before. Indeed, it is completely general and Quantum Mechanics instroudces only a light and subtle correction to this classical result. From this last equation, we observer that the Cherenkov radiation propagates along the generators of a cone whose axis coincides with the direction of motion of the particle an the cone angle is equal to 2\theta. This radiation can be registered on a colour film place perpendicularly to the direction of motion of the particle. Radiation flowing from a radiator of this type leaves a blue ring on the photographic film. These blue rings are the archetypical fingerprints of Vavilov-Cherenkov radiation!

The sharp directivity of the Cherenkov radiation makes it possible to determine the particle velocity \beta from the value of the Cherenkov’s angle \theta. From the Cherenkov’s formula above, it follows that the range of measurement of \beta is equal to

1/n\leq\beta<1

For \beta=1/n, the radiation is observed at an angle \theta=0\textdegree, while for the extreme with \beta=1, the angle \theta reaches a maximum value

\theta_{max}=\cos^{-1}\left(\dfrac{1}{n}\right)=arccos \left(\dfrac{1}{n}\right)

For instance, in the case of water, n=1.33 and \beta_{min}=1/1.33=0.75. Therefore, the Cherenkov radiation is observed in water whenever \beta\geq 0.75. For electrons being the charged particles passing through the water, this condition is satisfied if

T_e=m_ec^2\left(\dfrac{1}{\sqrt{1-\beta^2}}-1\right)=0.5\left( \dfrac{1}{\sqrt{1-0.75^2}}-1\right)=0.26MeV

As a consequence of this, the Cherenkov effect should be observed in water even for low-energy electrons ( for isntance, in the case of electrons produced by beta decay, or Compton electrons, or photoelectroncs resulting from the interaction between water and gamma rays from radioactive products, the above energy can be easily obtained and surpassed!). The maximum angle at which the Cherenkov effec can be observed in water can be calculated from the condition previously seen:

\cos\theta_{max}=1/n=0.75

This angle (for water) shows to be equal to about \theta\approx 41.5\textdegree=41\textdegree 30'. In agreement with the so-called Frank-Tamm formula ( please, see below what that formula is and means), the number of photons in the frequency interval \nu and \nu+d\nu emitted by some particle with charge Z moving with a velocity \beta in a medium with a refractive indez n is provided by the next equation:

\boxed{N(\nu) d\nu=4\pi^2\dfrac{(Zq)^2}{hc^2}\left(1-\dfrac{1}{n^2\beta^2}\right) d\nu}

This formula has some striking features:

1st. The spectrum is identical for particles with Z=constant, i.e., the spectrum is exactly the same, irespectively the nature of the particle. For instance, it could be produced both by protons, electrons, pions, muons or their antiparticles!

2nd. As Z increases, the number of emitted photons increases as Z^2.

3rd. N(\nu) increases with \beta, the particle velocity, from zero ( with \beta=1/n) to

N=4\pi^2\left(\dfrac{q^2Z^2}{hc^2}\right)\left(1-\dfrac{1}{n^2}\right)

with \beta\approx 1.

4th. N(\nu) is approximately independent of \nu. We observe that dN(\nu)\propto d\nu.

5th. As the spectrum is uniform in frequency, and E=h\nu, this means that the main energy of radiation is concentrated in the extreme short-wave region of the spectrum, i.e.,

\boxed{dE_{Cherenkov}\propto \nu d\nu}

And then, this feature explains the bluish-violet-like colour of the Cherenkov radiation!

Indeed, this feature also indicates the necessity of choosing materials for practical applications that are “transparent” up to the highest frequencies ( even the ultraviolet region). As a rule, it is known that n<1 in the X-ray region and hence the Cherenkov condition can not be satisfied! However, it was also shown by clever experimentalists that in some narrow regions of the X-ray spectrum the refractive index is n>1 ( the refractive index depends on the frequency in any reasonable materials. Practical Cherenkov materials are, thus, dispersive! ) and the Cherenkov radiation is effectively observed in apparently forbidden regions.

The Cherenkov effect is currently widely used in diverse applications. For instance, it is useful to determine the velocity of fast charged particles ( e.g, neutrino detectors can not obviously detect neutrinos but they can detect muons and other secondaries particles produced in the interaction with some polarizable medium, even when they are produced by (electro)weak intereactions like those happening in the presence of chargeless neutrinos). The selection of the medium fo generating the Cherenkov radiation depends on the range of velocities \beta over which measurements have to be produced with the aid of such a “Cherenkov counter”. Cherenkov detectors/counters are filled with liquids and gases and they are found, e.g., in Kamiokande, Superkamiokande and many other neutrino detectors and “telescopes”. It is worth mentioning that velocities of ultrarelativistic particles are measured with Cherenkov detectors whenever they are filled with some special gasesous medium with a refractive indes just slightly higher than the unity. This value of the refractive index can be changed by realating the gas pressure in the counter! So, Cherenkov detectors and counters are very flexible tools for particle physicists!

Remark: As I mentioned before, it is important to remember that (the most of) the practical Cherenkov radiators/materials ARE dispersive. It means that if \omega is the photon frequency, and k=2\pi/\lambda is the wavenumber, then the photons propagate with some group velocity v_g=d\omega/dk, i.e.,

\boxed{v_g=\dfrac{d\omega}{dk}=\dfrac{c}{\left[n(\omega)+\omega \frac{dn}{d\omega}\right]}}

Note that if the medium is non-dispersive, this formula simplifies to the well known formula v_g=c/n. As it should be for vacuum.

Accodingly, following the PDG, Tamm showed in a classical paper that for dispersive media the Cherenkov radiation is concentrated in a thin  conical shell region whose vertex is at the moving charge and whose opening half-angle \eta is given by the expression

\boxed{cotan \theta_c=\left[\dfrac{d}{d\omega}\left(\omega\tan\theta_c\right)\right]_{\omega_0}=\left(\tan\theta_c+\beta^2\omega n(\omega) \dfrac{dn}{d\omega} cotan (\theta_c)\right)\bigg|_{\omega_0}}

where \theta_c is the critical Cherenkov angle seen before, \omega_0 is the central value of the small frequency range under consideration under the Cherenkov condition. This cone has an opening half-angle \eta (please, compare with the previous convention with \varphi for consistency), and unless the medium is non-dispersive (i.e. dn/d\omega=0, n=constant), we get \theta_c+\eta\neq 90\textdegree. Typical Cherenkov radiation imaging produces blue rings.

THE CHERENKOV EFFECT: QUANTUM FORMULAE

When we considered the Cherenkov effect in the framework of QM, in particular the quantum theory of radiation, we can deduce the following formula for the Cherenkov effect that includes the quantum corrections due to the backreaction of the particle to the radiation:

\boxed{\cos\theta=\dfrac{1}{\beta n}+\dfrac{\Lambda}{2\lambda}\left(1-\dfrac{1}{n^2}\right)}

where, like before, \beta=v/c, n is the refraction index, \Lambda=\dfrac{h}{p}=\dfrac{h}{mv} is the De Broglie wavelength of the moving particle and \lambda is the wavelength of the emitted radiation.

Cherenkov radiation is observed whenever \beta_n>1 (i.e. if v>c/n), and the limit of the emission is on the short wave bands (explaining the typical blue radiation of this effect). Moreover, \lambda_{min} corresponds to \cos\theta\approx 1.

By the other hand, the radiated energy per particle per unit of time is equal to:

\boxed{-\dfrac{dE}{dt}=\dfrac{e^2V}{c^2}\int_0^{\omega_{max}}\omega\left[1-\dfrac{1}{n^2\beta^2}-\dfrac{\Lambda}{n\beta\lambda}\left(1-\dfrac{1}{n^2}\right)-\dfrac{\Lambda^2}{4\lambda^2}\left(1-\dfrac{1}{n^2}\right)\right]d\omega}

where \omega=2\pi c/n\lambda is the angular frequency of the radiation, with a maximum value of \omega_{max}=2\pi c/n\lambda_{min}.
Remark: In the non-relativistic case, v<<c, and the condition \beta n>1 implies that n>>1. Therefore, neglecting the quantum corrections (the charged particle self-interaction/backreaction to radiation), we can insert the limit \Lambda/\lambda\rightarrow 0 and the above previous equations will simplify into:

\boxed{\cos\theta=\dfrac{1}{n\beta}-\dfrac{c}{nv}}

\boxed{-\dfrac{dE}{dt}=\dfrac{e^2 v}{c^2}\int_0^{\omega_{max}}\omega\left(1-\dfrac{c^2}{n^2v^2}\right)d\omega}

Remember: \omega_{max} is determined with the condition \beta n(\omega_{max})=1, where n(\omega_{max}) represents the dispersive effect of the material/medium through the refraction index.

THE FRANK-TAMM FORMULA

The number of photons produced per unit path length and per unit of energy of a charged particle (charge equals to Zq) is given by the celebrated Frank-Tamm formula:

\boxed{\dfrac{d^2N}{dEdx}=\dfrac{\alpha Z^2}{\hbar c}\sin^2\theta_c=\dfrac{\alpha^2 Z^2}{r_em_ec^2}\left(1-\dfrac{1}{\beta^2n^2(E)}\right)}

In terms of common values of fundamental constants, it takes the value:

\boxed{\dfrac{d^2N}{dEdx}\approx 370Z^2\sin^2\theta_c(E)eV^{-1}\cdot cm^{-1}}

or equivalently it can be written as follows

\boxed{\dfrac{d^2N}{dEdx}=\dfrac{2\pi \alpha Z^2}{\lambda^2}\left(1-\dfrac{1}{\beta^2n^2(\lambda)}\right)}

The refraction index is a function of photon energy E=\hbar \omega, and it is also the sensitivity of the transducer used to detect the light with the Cherenkov effect! Therefore, for practical uses, the Frank-Tamm formula must be multiplied by the transducer response function and integrated over the region for which we have \beta n(\omega)>1.

Remark: When two particles are close toghether ( to be close here means to be separated a distance d<1 wavelength), the electromagnetic fields form the particles may add coherently and affect the Cherenkov radiation. The Cherenkov radiation for a electron-positron pair at close separation is suppressed compared to two independent leptons!

Remark (II): Coherent radio Cherenkov radiation from electromagnetic showers is significant and it has been applied to the study of cosmic ray air showers. In addition to this, it has been used to search for electron neutrinos induced showers by cosmic rays.

CHERENKOV DETECTOR: MAIN FORMULA AND USES

The applications of Cherenkov detectors for particle identification (generally labelled as PID Cherenkov detectors) are well beyond the own range of high-energy Physics. Its uses includes: A) Fast particle counters. B) Hadronic particle indentifications. C) Tracking detectors performing complete event reconstruction. The PDG gives some examples of each category: a) Polarization detector of SLD, b) the hadronic PID detectors at B factories like BABAR or the aerogel threshold Cherenkov in Belle, c) large water Cherenkov counters liket those in Superkamiokande and other neutrino detector facilities.

Cherenkov detectors contain two main elements: 1) A radiator/material through which the particle passes, and 2) a photodetector. As Cherenkov radiation is a weak source of photons, light collection and detection must be as efficient as possible. The presence of a refractive material specifically designed to detect some special particles is almost vindicated in general.

The number of photoelectrons detected in a given Cherenkov radiation detector device is provided by the following formula (derived from the Tamm-Frank formula simply taking into account the efficiency in a straightforward manner):

\boxed{N=L\dfrac{\alpha^2 Z^2}{r_em_ec^2}\int \epsilon (E)\sin^2\theta_c(E)dE}

where L is the path length of the particle in the radiator/material, \epsilon (E) is the efficiency for the collector of Cherenkov light and transducing it in photoelectrons, and

\boxed{\dfrac{\alpha^2}{r_em_ec^2}=370eV^{-1}cm^{-1}}

Remark: The efficiencies and the Cherenkov critical angle are functions of the photon energy, generally speaking. However, since the typical energy dependen variation of the refraction index is modest, a quantity sometimes called Cherenkov detector quality fact N_0 can be defined as follows

\boxed{N_0=\dfrac{\alpha^2Z^2}{r_em_ec^2}\int \epsilon dE}

In this case, we can write

\boxed{N\approx LN_0<\sin^2\theta_c>}

Remark(II): Cherenkov detectors are classified into imaging or threshold types, depending on its ability to make use of Cherenkov angle information. Imaging counters may be used to track particles as well as identify particles.

Other main uses/applications of the Vavilov-Cherenkov effect are:

1st. Detection of labeled biomolecules. Cherenkov radiation is widely used to facilitate the detection of small amounts and low concentrations of biomolecules. For instance, radioactive atoms such as phosphorus-32 are readily introduced into biomolecules by enzymatic and synthetic means and subsequently may be easily detected in small quantities for the purpose of elucidating biological pathways and in characterizing the interaction of biological molecules such as affinity constants and dissociation rates.

2nd. Nuclear reactors. Cherenkov radiation is used to detect high-energy charged particles. In pool-type nuclear reactors, the intensity of Cherenkov radiation is related to the frequency of the fission events that produce high-energy electrons, and hence is a measure of the intensity of the reaction. Similarly, Cherenkov radiation is used to characterize the remaining radioactivityof spent fuel rods.

3rd. Astrophysical experiments. The Cherenkov radiation from these charged particles is used to determine the source and intensity of the cosmic ray,s which is used for example in the different classes of cosmic ray detection experiments. For instance, Ice-Cube, Pierre-Auger, VERITAS, HESS, MAGIC, SNO, and many others. Cherenkov radiation can also be used to determine properties of high-energy astronomical objects that emit gamma rays, such as supernova remnants and blazars. In this last class of experiments we place STACEE, in new Mexico.

4th. High-energy experiments. We have quoted already this, and there many examples in the actual LHC, for instance, in the ALICE experiment.

VACUUM CHERENKOV RADIATION

Vacuum Cherenkov radiation (VCR) is the alledged and  conjectured phenomenon which refers to the Cherenkov radiation/effect of a charged particle propagating in the physical vacuum. You can ask: why should it be possible? It is quite straightforward to understand the answer.

The classical (non-quantum) theory of relativity (both special and general)  clearly forbids any superluminal phenomena/propagating degrees of freedom for material particles, including this one (the vacuum case) because a particle with non-zero rest mass can reach speed of light only at infinite energy (besides, the nontrivial vacuum itself would create a preferred frame of reference, in violation of one of the relativistic postulates).

However, according to modern views coming from the quantum theory, specially our knowledge of Quantum Field Theory, physical vacuum IS a nontrivial medium which affects the particles propagating through, and the magnitude of the effect increases with the energies of the particles!

Then, a natural consequence follows: an actual speed of a photon becomes energy-dependent and thus can be less than the fundamental constant c=299792458m/s of  speed of light, such that sufficiently fast particles can overcome it and start emitting Cherenkov radiation. In summary, any charged particle surpassing the speed of light in the physical vacuum should emit (Vacuum) Cherenkov radiation. Note that it is an inevitable consequence of the non-trivial nature of the physical vacuum in Quantum Field Theory. Indeed, some crazy people saying that superluminal particles arise in jets from supernovae, or in colliders like the LHC fail to explain why those particles don’t emit Cherenkov radiation. It is not true that real particles become superluminal in space or collider rings. It is also wrong in the case of neutrino propagation because in spite of being chargeless, neutrinos should experiment an analogue effect to the Cherenkov radiation called the Askaryan effect. Other (alternative) possibility or scenario arises in some Lorentz-violating theories ( or even CPT violating theories that can be equivalent or not to such Lorentz violations) when a speed of a propagating particle becomes higher than c which turns this particle into the tachyon.  The tachyon with an electric charge would lose energy as Cherenkov radiation just as ordinary charged particles do when they exceed the local speed of light in a medium. A charged tachyon traveling in a vacuum therefore undergoes a constant proper-time acceleration and, by necessity, its worldline would form an hyperbola in space-time. These last type of vacuum Cherenkov effect can arise in theories like the Standard Model Extension, where Lorentz-violating terms do appear.

One of the simplest kinematic frameworks for Lorentz Violating theories is to postulate some modified dispersion relations (MODRE) for particles , while keeping the usual energy-momentum conservation laws. In this way, we can provide and work out an effective field theory for breaking the Lorentz invariance. There are several alternative definitions of MODRE, since there is no general guide yet to discriminate from the different theoretical models. Thus, we could consider a general expansion  in integer powers of the momentum, in the next manner (we set units in which c=1):

\boxed{E^2=f(p,m,c_n)=p^2+m^2+\sum_{n=-\infty}^{\infty}c_n p^n}

However, it is generally used a more soft expansion depending only on positive powers of the momentum in the MODRE. In such a case,

\boxed{E^2=f(p,m,a_n)=p^2+m^2+\sum_{n=1}^{\infty}a_n p^n}

and where p=\vert \mathbf{p}\vert. If Lorentz violations are associated to the yet undiscovered quantum theory of gravity, we would get that ordinary deviations of the dispersion relations in the special theory of relativity should appear at the natural scale of the quantum gravity, say the Planck mass/energy. In units where c=1 we obtain that Planck mass/energy is:

\boxed{M_P=\sqrt{\hbar^5/G_N}=1.22\cdot 10^{19}GeV=1.22\cdot 10^{16}TeV}

Lets write and parametrize the Lorentz violations induced by the fundamental scale of quantum gravity (naively this Planck mass scale) by:

\boxed{a_n=\dfrac{\Xi_n}{M_P^{n-2}}}

Here, \Xi_n is a dimensionless quantity that can differ from one particle (type) to another (type). Considering, for instance n=3,4, since the n<3 seems to be ruled out by previous terrestrial experiments, at higer energies the lowest non-null term will dominate the expansion with n\geq 3. The MODRE reads:

E^2=p^2+m^2+\dfrac{\Xi_a p^n}{M_P^{n-2}}

and where the label a in the term \Xi_a is specific of the particle type. Such corrections might only become important at the Planck scale, but there are two exclusions:

1st. Particles that propagate over cosmological distances can show differences in their propagation speed.
2nd. Energy thresholds for particle reactions can be shifted or even forbidden processes can be allowed. If the p^n-term is comparable to the m^2-term in the MODRE. Thus, threshold reactions can be significantly altered or shifted, because they are determined by the particle masses. So a threshold shift should appear at scales where:

\boxed{p_{dev}\approx\left(\dfrac{m^2M_P^{n-2}}{\Xi}\right)^{1/n}}

Imposing/postulating that \Xi\approx 1, the typical scales for the thresholds for some diffent kind of particles can be calculated. Their values for some species are given in the next table:

We can even study some different sources of modified dispersion relationships:

1. Measurements of time of flight.

2. Thresholds creation for: A) Vacuum Cherenkov effect, B) Photon decay in vacuum.

3. Shift in the so-called GZK cut-off.

4. Modified dispersion relationships induced by non-commutative theories of spacetime. Specially, there are time shifts/delays of photon signals induced by non-commutative spacetime theories.

We will analyse this four cases separately, in a very short and clear fashion. I wish!

Case 1. Time of flight. This is similar to the recently controversial OPERA experiment results. The OPERA experiment, and other similar set-ups, measure the neutrino time of flight. I dedicated a post to it early in this blog

https://thespectrumofriemannium.wordpress.com/2012/06/08/

In fact, we can measure the time of flight of any particle, even photons. A modified dispersion relation, like the one we introduced here above, would lead to an energy dependent speed of light. The idea of the time of flight (TOF) approach is to detect a shift in the arrival time of photons (or any other massless/ultra-relativistic particle like neutrinos) with different energies, produced simultaneous in a distant object, where the distance gains the usually Planck suppressed effect. In the following we use the dispersion relation for n=3 only, as modifications in higher orders are far below the sensitivity of current or planned experiments. The modified group velocity becomes:

v=\dfrac{\partial E}{\partial p}

and then, for photons,

v\approx 1-\Xi_\gamma\dfrac{p}{M}

The time difference in the photon shift detection time will be:

\Delta t=\Xi_\gamma \dfrac{p}{M}D

where D is the distance multiplied (if it were the case) by the redshift (1+z) to correct the energy with the redshift. In recent years, several measurements on different objects in various energy bands leading to constraints up to the order of 100 for \Xi. They can be summarized in the next table ( note that the best constraint comes from a short flare of the Active Galactic Nucleus (AGN) Mrk 421, detected in the TeV band by the Whipple Imaging Air Cherenkov telescope):

There is still room for improvements with current or planned experiments, although the distance for TeV-observations is limited by absorption of TeV photons in low energy metagalactic radiation fields. Depending on the energy density of the target photon field one gets an energy dependent mean free path length, leading to an energy and redshift dependent cut off energy (the cut off energy is defined as the energy where the optical depth is one).

2. Thresholds creation for: A) Vacuum Cherenkov effect, B) Photon decay in vacuum. By the other hand, the interaction vertex in quantum electrodynamics (QED) couples one photon with two leptons. When we assume for photons and leptons the following dispersion relations (for simplicity we adopt all units with M=1). Then:

\omega_k^2=k^2+\xi k^n                E^2_p=p^2+m^2+\Xi p^n

Let us write the photon tetramomentum like \mathbb{P}=(\omega_k,\mathbf{k}) and the lepton tetramomentum \mathbb{P}=(E_p,\mathbf{p}) and \mathbb{Q}=(E_q,\mathbf{q}). It can be shown that the transferred tetramomentum will be

\xi k^n+\Xi p^n-\Xi q^n=2(E_p\omega_k-\mathbf{p}\cdot\mathbf{k})

where the r.h.s. is always positive. In the Lorentz invariant case the parameters \xi, \Xi  are zero, so that this equation can’t be solved and all processes of the single vertex are forbidden. If these parameters are non-zero, there can exist a solution and so these processes can be allowed. We now consider two of these interactions to derive constraints on the parameters \Xi, \xi. The vacuum
Cherenkov effect e^-\rightarrow \gamma e^- and the spontaneous photon-decay \gamma\rightarrow e^+e^-.

A) As we have studied here, the vacuum Cherenkov effect is a spontaneous emission of a photon by a charged particle 0<E_\gamma<E_{par}.  These effect occurs if the particle moves faster than the slowest possible radiated photon in vacuum!
In the case of \Xi>0, the maximal attainable speed for the particle c_{max} is faster than c. This means, that the particle can always be faster than a zero energy photon with

\displaystyle{c_{\gamma_0}=c\lim_{k\rightarrow 0}\dfrac{\partial \omega}{\partial k}=c\lim_{k\rightarrow 0}\dfrac{2k+n\xi k^{n-1}}{2\sqrt{k^2+\xi k^n}}=c}

and it is independent of \xi. In the case of \Xi<0, i.e., c_{par} decreases with energy, you need a photon with c_\gamma<c_{par}<x. This is only possible if \xi<\Xi.

Therefore, due to the radiation of photons such an electron loose energy. The observation of high energetic electrons allows to derive constraints on \Xi and \xi.  In the case of \Xi<0, in the case with n=3, we have the bound

\Xi<\dfrac{m^2}{2p^3_{max}}

Moreover, from the observation of 50 TeV photons in the Crab Nebula (and its pulsar) one can conclude the existens of 50 TeV electrons due to the inverse Compton scattering of these electrons with those photons. This leads to a constraint on \Xi of about

\Xi<1.2\times 10^{-2}

where we have used \Xi>0 in this case.

B) The decay of photons into positrons and electrons \gamma\rightarrow e^+e^- should be a very rapid spontaneous decay process. Due to the observation of Gamma rays from the Crab Nebula on earth with an energy up to E\sim 50TeV. Thus, we can reason that these rapid decay doesn’t occur on energies below 50 TeV. For the constraints on \Xi and \xi these condition means (again we impose n=3):

\xi<\dfrac{\Xi}{2}+0.08, \mbox{for}\; \xi\geq 0

\xi<\Xi+\sqrt{-0.16\Xi}, \mbox{for}\;\Xi<\xi<0.

3. Shift in the GZK cut-off. As the energy of a proton increases,the pion production reaction can happen with low energy photons of the Cosmic Microwave Background (CMB).

This leads to an energy dependent mean free path length of the particles, resulting in a cutoff at energies around E_{GZK}\approx 10^{20}eV. This is the the celebrated Greisen-Kuzmin-Zatsepin (GZK) cut off. The resonance for the GZK pion photoproduction with the CMB backgroud can be read from the next condition (I will derive this condition in a future post):

\boxed{E_{GZK}\approx\dfrac{m_p m_\pi}{2E_\gamma}=3\times 10^{20}eV\left(\dfrac{2.7K}{E_\gamma}\right)}

Thus in Lorentz invariant world, the mean free path length of a particle of energy 5.1019 eV is 50 Mpc i.e. particle over this energy are readily absorbed due to pion photoproduction reaction. But most of the sources of particle of ultra high energy are outside 50 Mpc. So, one expects no trace of particles of energy above 10^{20}eV on Earth. From the experimental point of view AGASA has found
a few particles having energy higher than the constraint given by GZK cutoff limit and claimed to be disproving the presence of GZK cutoff or at least for different threshold for GZK cutoff, whereas HiRes is consistent with the GZK effect. So, there are two main questions, not yet completely unsolved:

i) How one can get definite proof of non-existence GZK cut off?
ii) If GZK cutoff doesn’t exist, then find out the reason?

The first question could by answered by observation of a large sample of events at these energies, which is necessary for a final conclusion, since the GZK cutoff is a statistical phenomena. The current AUGER experiment, still under construction, may clarify if the GZK cutoff exists or not. The existence of the GZK cutoff would also yield new limits on Lorentz or CPT violation. For the second question, one explanation can be derived from Lorentz violation. If we do the calculation for GZK cutoff in Lorentz violated world we would get the modified proton dispersion relation as described in our previous equations with MODRE.

4. Modified dispersion relationships induced by non-commutative theories of spacetime. As we said above, there are time shifts/delays of photon signals induced by non-commutative spacetime theories. Noncommutative spacetime theories introduce a new source of MODRE: the fuzzy nature of the discreteness of the fundamental quantum spacetime. Then, the general ansatz of these type of theories comes from:

\boxed{\left[\hat{x}^\mu,\hat{x}^\nu\right]=i\dfrac{\theta^{\mu\nu}}{\Lambda_{NC}^2}}

where \theta^{\mu\nu} are the components of an antisymmetric Lorentz-like tensor which components are the order one. The fundamental scale of non-commutativity \Lambda^2_{NC} is supposed to be of the Planck length. However, there are models with large extra dimensions that induce non-commutative spacetime models with scale near the TeV scale! This is interesting from the phenomenological aside as well, not only from the theoretical viewpoint. Indeed, we can investigate in the following whether astrophysical observations are able to constrain certain class of models with noncommutative spacetimes which are broken at the TeV scale or higher. However, there due to the antisymmetric character of the noncommutative tensor, we need a magnetic and electric background field in order to study these kind of models (generally speaking, we need some kind of field inducing/producing antisymmetric field backgrounds), and then the dispersion relation for photons remains the same as in a commutative spacetime. Furthermore, there is no photon energy dependence of the dispersion relation. Consequently, the time-of-flight experiments are inappopriate because of their energy-dependent dispersion. Therefore, we suggest the next alternative scenario: suppose, there exists a strong magnetic field  (for instance, from a star or a cluster of stars) on the path photons emitted at a light source (e.g. gamma-ray bursts). Then, analogous to gravitational lensing, the photons experience deflection and/or change in time-of-arrival, compared to the same path without a magnetic background field. We can make some estimations for several known objects/examples are shown in this final table:

In summary:

1st. Vacuum Cherenkov and related effects modifying the dispersion relations of special relativity are natural in many scenarios beyond the Standard Relativity (BSR) and beyond the Standard Model (BSM).

2nd. Any theory allowing for superluminal propagation has to explain the null-results from the observation of the vacuum Cherenkov effect. Otherwise, they are doomed.

3rd. There are strong bounds coming from astrophysical processes and even neutrino oscillation experiments that severely imposes and kill many models. However, it is true that current MODRE bound are far from being the most general bounds. We expect to improve these bounds with the next generation of experiments.

4th. Theories that can not pass these tests (SR obviously does) have to be banned.

5th. Superluminality has observable consequences, both in classical and quantum physics, both in standard theories and theories beyond standard theories. So, it you buid a theory allowing superluminal stuff, you must be very careful with what kind of predictions can and can not do. Otherwise, your theory is complentely nonsense.

As a final closing, let me include some nice Cherenkov rings from Superkamiokande and MiniBoone experiments. True experimental physics in action. And a final challenge…

FINAL CHALLENGE: Are you able to identify the kind of particles producing those beautiful figures? Let me know your guesses ( I do know the answer, of course).

Figure 1. Typical SuperKamiokande Ring.  I dedicate this picture to my admired Japanase scientists there. I really, really admire that country and their people, specially after disasters like the 2011 Earthquake and the Fukushima accident. If you are a japanase reader/follower, you must know we support your from abroad. You were not, you are not and you shall not be alone.

Figure 2. Typical MiniBooNe ring. History: I used this nice picture in my Master Thesis first page, as the cover/title page main picture!


LOG#045. Fake superluminality.

Before becoming apparent superluminal readers, we are going to remember and review some elementary notation and concepts from the relativistic Doppler effect and the starlight aberration we have already studied in this blog.

Let us consider and imagine the next gedankenexperiment/thought experiment. Some moving object emits pulses of light during some time interval, denoted by \Delta \tau_e in its own frame. Its distance from us is very large, say

D>>c\Delta \tau_e

Question: Does it (light) arrive at time t=D/c? Suppose the object moves forming certain angle \theta according to the following picture

Time dilation means that a second pulse would be experiment a time delay \Delta t_e=\gamma \Delta \tau_e, later of course from the previous pulse, and at that time the object would have travelled a distance \Delta x=v\Delta t_e\cos\theta away from the source, so it would take it an additional time \Delta x/c to arrive at its destination. The reception time between pulses would be:

\Delta t_r=\Delta t_e+\beta \Delta t_e\cos\theta=\gamma (1+\beta \cos\theta)\Delta \tau_e

i.e.

\boxed{\Delta t_r=(1+\beta\cos\theta)\gamma \Delta \tau_e}

In the range 0<\theta<\pi, the time interval separation measured from both pulses in the rest frame on Earth will be longer than in the rest frame of the moving object. This analysis remains valid even if the 2 events are not light beams/pulses but succesive packets or “maxima” of electromagnetic waves ( electromagnetic radiation).

Astronomers define the dimensionless redshift

\boxed{(1+z)\equiv \dfrac{\Delta t_r}{\Delta \tau_e}=\gamma (1+\beta \cos\theta)}

where, as it is common in special relativity, \beta=v/c, \gamma^2=\dfrac{1}{1-\beta^2}

The 3 interesting limits of the above expression are:

1st. Receding emitter case. The moving object moves away from the receiver. Then, we have \theta=0 supposing a completely radial motion in the line of sight, and then a literal “redshift” ( lower frequencies than the proper frequencies)

(1+z)=\sqrt{\dfrac{1+\beta}{1-\beta}}

2nd. Approaching emitter case. The moving object approaches and goes closer to the observer. Then, we get \theta=\pi, or motion inward the radial direction, and then a “blueshift” ( higher frequencies than those of the proper frequencies)

(1+z)=\sqrt{\dfrac{1-\beta}{1+\beta}}

3rd. Tangential or transversal motion of the source. This is also called second-order redshift. It has been observed in extremely precise velocity measurements of pulsars in our Galaxy.

(1+z)=\gamma

Furthermore, these redshifts have all been observed in different astrophysical observations and, in addition, they have to be taken into account for tracking the position via GPS, geolocating satellites and/or following their relative positions with respect to time or calculating their revolution periods around our planet.

Remark: Quantum Mechanics and Special Relativity would be mutually inconsistent IF we did not find the same formual for the ratios between energy and frequencies at different reference frames.

EXAMPLE: The emission line of the oxygen (II) [O(II)] is, in its rest frame, \lambda_0=3727\AA. It is observed in a distant galaxy to be at \lambda=9500\AA. What is the redshift z and the recession velocity of this galaxy?

Solution.  From the definition of wavelength in electromagnetism cT=\lambda, adn c\tau=\lambda_0. Then,

(1+z)=\dfrac{T}{\tau}=\dfrac{\lambda}{\lambda_0}=\dfrac{9500}{3727}=2.55, and thus z=1.55

From the radial velocity hypothesis, we get

(1+z)=\sqrt{\dfrac{1+\beta}{1-\beta}} or

\beta=\dfrac{(1+z)^2-1}{(1+z)^2+1}=0.73

and thus \beta=0.73 or v=0.73c
Note that this result follows from the hypothesis of the expansion of the Universe, and it holds in the relativistic theory of gravity, General Relativity, and it should also holds in extensions of it, even in Quantum Gravity somehow!

Remember: Stellar aberration causes taht the positions on the sky of the celestial objects are changing as the Earth moves around the Sun. As the Earth’s velocity is about v_E\approx 30km/s, and then \beta_E\approx 10^{-4}, it implies an angular separation about \Delta \theta\approx 10^{-4}rad. Anyway, it is worth mentioning that the astronomer Bradley observed this starlight aberration in 1729! A moving observer observes that light from stars are at different positions with respect to a rest observer, and that the new position does not depend on the distance to the star. Thus, as the relative velocity increases, stars are “displaced” further and further towards the direction of observation.

Now, we are going to the main subject of the post. I decided to review this two important effects because it is useful to remember then and to understand that they are measured and they are real effects. They are not mere artifacts of the special theory of relativity masking some unknown reality. They are the reality in the sense they are measured. Alternative theories trying to understand these effects exist but they are more complicated and they remember me those people trying to defend the geocentric model of the Universe with those weird metaphenomenon known as epicycles in order to defend what can not be defended from the experimental viewpoint.

In order to make our discussion visual and phenomenological, I am going to consider a practical example. Certain radio-galaxy, denoted by 3C 273 moves with a velocity

\omega=0.8 miliarc sec/yr=4\cdot 10^{-9}\dfrac{rad}{yr}

Note that 1 miliarc sec=\left(\dfrac{10^{-3}}{3600}\right)^{\textdegree}

Knowing the rate expansion of the universe and the redshift of the radiogalaxy, its distance is calculated to be about 2.6\cdot 10^9 lyr. To obtain the relative tangential velocity, we simply multiply the angular velocity by the distance, i.e. v_{r\perp}=\omega D.

From the above data, we get that the apparent tangential radial velocity of our radiogalaxy would be about v_{r\perp}\approx 10c. Indeed, this observation is not isolated. There are even jets of matter flowin from some stars at apparent superluminal velocities. Of course this is an apparent issue for SR. How can we explain it? How is it possible in the SR framework to obtain a superluminal velocity? It shows that there is no contradiction with SR. The (fake and apparent) superluminal effect CAN BE EXPLAINED naturally in the SR framework in a very elegant way. Look at the following picture:

It shows:

-A moving object with velocity v=\vert \mathbf{v}\vert with respect to Earth, approaching to Earth.

-There is some angle \theta in the direction of observation. And as it moves towards Earth, with our conventions, $lates \theta\approx\pi=180\textdegree$

-The moving object emits flashes of light at two different points, A and B, separated by some time interval \Delta t_e in the Earth reference frame.

-The distance between those two points A and B, is very small compared with the distance object-Earth, i.e., d(A,B)<< D.

Question: What is the time separation \Delta t_r between the receptions of the pulses at the Earth surface?

The solution is very cool and intelligent. We get

A: time interval \Delta t_e=t_A=\dfrac{D}{c}

B: time interval t_B=t_A+\dfrac{v\Delta t_e\cos\theta}{c}

Note that \cos\theta<0!

From this equations, we get a combined equation for the time separation of pulses on Earth

\boxed{\Delta t_r=\Delta t_e (1+\beta \cos\theta)}

The tangential separation is defined to be

\Delta Y=Y_B-Y_A=v\Delta t_e\sin\theta

so, the apparent velocity of the source, seen from the Earth frame, is showed to be:

\boxed{v_a=\dfrac{\Delta Y}{\Delta t_r}=\dfrac{\beta\sin\theta}{1+\beta\cos\theta}c}

Remark (I): v_a>>c IFF \beta\approx 1 AND \cos\theta\approx -1!

Remark (II): There are some other sources of fake superluminality in special relativity or general relativity (the relativist theory of gravity). One example is that the phase velocity and the group velocity can indeed exceed the speed of light, since from the equation v_{ph}v_{g}=c^2, it is obvious that whenever that one of those two velocities (group or phase velocity) are lower than the speed of light at vacuum, the another has to be exceeding the speed of light. That is not observable but it has an important rôle in the de Broglie wave-particle portrait of the atom. Other important example of apparent and fake superluminal motion is caused by gravitational (micro)lensing in General Relativity. Due to the effect of intense gravitational fields ( i.e., big concentrations of mass-energy), light beams from slow-movinh objects can be magnified to make them, apparently, superluminal. In this sense, gravity acts in an analogue way of a lens, i.e., as it there were a refraction index and modifying the propagation of the light emitted by the sources.

Remark (III): In spite of the appearance, I am not opposed to the idea of superluminal entities, if they don’t break established knowledge that we do know it works. Tachyons have problems not completely solved and many physicists think (by good reasons) they are “unphysical”.  However, my own experience working with theories beyond special/general relativity and allowing superluminal stuff (again, we should be careful with what we mean with superluminality and with “velocity” in general) has showed me that if superluminal objects do exist, they have observable consequences. And as it has been showed here, not every apparent superluminal motion is superluminal!Indeed, it can be handled in the SR framework. So, be aware of crackpots claiming that there are superluminal jets of matter out there, that neutrinos are effectively superluminal entities ( again, an observation refuted by OPERA, MINOS and ICARUS and in complete disagreement with the theory of neutrino oscillations and the real mass that neutrino do have!) or even when they say there are superluminal protons and particles in the LHC or passing through the atmosphere without any effect that should be vissible with current technology. It is simply not true, as every good astronomer, astrophysicist or theoretical physicist do know! Superluminality, if it exists, it is a very subtle thing and it has observable consequences that we have not observed until now. As far as I know, there is no (accepted) observation of any superluminal particle, as every physicist do know. I have discussed the issue of neutrino time of flight here before:

https://thespectrumofriemannium.wordpress.com/2012/06/08/

Final challenge: With the date given above, what would the minimal value of \beta be in order to account for the observed motion and apparent (fake) superluminal velocity of the radiogalaxy 3C 273?